3.1005 \(\int \frac{(c x)^{3/4}}{(a+b x^2)^{7/4}} \, dx\)

Optimal. Leaf size=61 \[ \frac{4 (c x)^{7/4} \left (\frac{b x^2}{a}+1\right )^{3/4} \, _2F_1\left (\frac{7}{8},\frac{7}{4};\frac{15}{8};-\frac{b x^2}{a}\right )}{7 a c \left (a+b x^2\right )^{3/4}} \]

[Out]

(4*(c*x)^(7/4)*(1 + (b*x^2)/a)^(3/4)*Hypergeometric2F1[7/8, 7/4, 15/8, -((b*x^2)/a)])/(7*a*c*(a + b*x^2)^(3/4)
)

________________________________________________________________________________________

Rubi [A]  time = 0.018248, antiderivative size = 61, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {365, 364} \[ \frac{4 (c x)^{7/4} \left (\frac{b x^2}{a}+1\right )^{3/4} \, _2F_1\left (\frac{7}{8},\frac{7}{4};\frac{15}{8};-\frac{b x^2}{a}\right )}{7 a c \left (a+b x^2\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[(c*x)^(3/4)/(a + b*x^2)^(7/4),x]

[Out]

(4*(c*x)^(7/4)*(1 + (b*x^2)/a)^(3/4)*Hypergeometric2F1[7/8, 7/4, 15/8, -((b*x^2)/a)])/(7*a*c*(a + b*x^2)^(3/4)
)

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{(c x)^{3/4}}{\left (a+b x^2\right )^{7/4}} \, dx &=\frac{\left (1+\frac{b x^2}{a}\right )^{3/4} \int \frac{(c x)^{3/4}}{\left (1+\frac{b x^2}{a}\right )^{7/4}} \, dx}{a \left (a+b x^2\right )^{3/4}}\\ &=\frac{4 (c x)^{7/4} \left (1+\frac{b x^2}{a}\right )^{3/4} \, _2F_1\left (\frac{7}{8},\frac{7}{4};\frac{15}{8};-\frac{b x^2}{a}\right )}{7 a c \left (a+b x^2\right )^{3/4}}\\ \end{align*}

Mathematica [A]  time = 0.0114778, size = 59, normalized size = 0.97 \[ \frac{4 x (c x)^{3/4} \left (\frac{b x^2}{a}+1\right )^{3/4} \, _2F_1\left (\frac{7}{8},\frac{7}{4};\frac{15}{8};-\frac{b x^2}{a}\right )}{7 a \left (a+b x^2\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*x)^(3/4)/(a + b*x^2)^(7/4),x]

[Out]

(4*x*(c*x)^(3/4)*(1 + (b*x^2)/a)^(3/4)*Hypergeometric2F1[7/8, 7/4, 15/8, -((b*x^2)/a)])/(7*a*(a + b*x^2)^(3/4)
)

________________________________________________________________________________________

Maple [F]  time = 0.033, size = 0, normalized size = 0. \begin{align*} \int{ \left ( cx \right ) ^{{\frac{3}{4}}} \left ( b{x}^{2}+a \right ) ^{-{\frac{7}{4}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(3/4)/(b*x^2+a)^(7/4),x)

[Out]

int((c*x)^(3/4)/(b*x^2+a)^(7/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c x\right )^{\frac{3}{4}}}{{\left (b x^{2} + a\right )}^{\frac{7}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(3/4)/(b*x^2+a)^(7/4),x, algorithm="maxima")

[Out]

integrate((c*x)^(3/4)/(b*x^2 + a)^(7/4), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x^{2} + a\right )}^{\frac{1}{4}} \left (c x\right )^{\frac{3}{4}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(3/4)/(b*x^2+a)^(7/4),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^(1/4)*(c*x)^(3/4)/(b^2*x^4 + 2*a*b*x^2 + a^2), x)

________________________________________________________________________________________

Sympy [C]  time = 61.7267, size = 44, normalized size = 0.72 \begin{align*} \frac{c^{\frac{3}{4}} x^{\frac{7}{4}} \Gamma \left (\frac{7}{8}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{7}{8}, \frac{7}{4} \\ \frac{15}{8} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac{7}{4}} \Gamma \left (\frac{15}{8}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)**(3/4)/(b*x**2+a)**(7/4),x)

[Out]

c**(3/4)*x**(7/4)*gamma(7/8)*hyper((7/8, 7/4), (15/8,), b*x**2*exp_polar(I*pi)/a)/(2*a**(7/4)*gamma(15/8))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c x\right )^{\frac{3}{4}}}{{\left (b x^{2} + a\right )}^{\frac{7}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(3/4)/(b*x^2+a)^(7/4),x, algorithm="giac")

[Out]

integrate((c*x)^(3/4)/(b*x^2 + a)^(7/4), x)